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1.	Science	and	Application	Target:	Canopy	Foliar	Traits	related	to	Ecosystem	Functioning		
Measurement	of	the	biochemical,	physiological,	and	functional	attributes	of	terrestrial	vegetation	is	required	
to	address	Earth	Science	Theme	III:	Marine	and	Terrestrial	Ecosystems	and	Natural	Resource	Management.	
An	imaging	spectroscopy	mission	is	needed	to	1)	provide	new	quantitative	measurements	of	biogeochemical	
cycles,	ecosystem	functioning,	and	factors	that	influence	vegetation	health	and	ecosystem	services,	and	2)	
advance	Earth	system	models	with	improved	representation	of	ecosystems.	This	will	result	in	significantly	
better	understanding	of	global	biogeochemical	processes	globally	to	enable	more	accurate	Earth	system	
forecasting.	

Terrestrial	ecosystems	influence	the	Earth’s	climate	by	regulating	exchanges	of	matter	and	energy	
between	the	land	and	atmosphere	(Bonan	2008).	On	an	annual	basis,	photosynthesis	and	respiration	absorb	
and	release	approximately	20%	of	the	total	atmospheric	carbon	(C)	pool	(Canadell	et	al.	al	2007).		In	recent	
decades,	a	net	imbalance	between	these	processes	,	linked	to	strong	C	sinks	in	soils	and	living	vegetation,	has	
offset	a	substantial	fraction	of	human	CO2	emissions	(Le	Quéré	et	al.	2014).	The	ability	of	ecosystems	to	
continue	sequestering	C	at	such	high	rates	is	unclear	(Arora	et	al.	2013,	Cox	et	al.	2013).	Addressing	this	topic	
is	critical	to	future	climate	forecasting	and	will	require	new	tools	for	characterizing	ecosystems	and	
improving	models	that	simulate	their	response	to	change.	A	key	challenge	that	limits	our	ability	to	monitor	
and	model	global	terrestrial	ecosystem	functioning,	defined	as	the	chemical,	biological	and	physical	
processes	occurring	within	an	ecosystem,	is	the	lack	of	comprehensive	information	on	the	spatial	and	
temporal	variability	of	the	critical	traits	as	well	as	environmental	parameters	that	drive	physiological	
processes	in	terrestrial	vegetation	(Jetz	et	al.	2016).	

Imaging	spectroscopy	in	the	solar	reflective	domain	of	the	electromagnetic	spectrum	(VSWIR:	380	to	
2500	nm)	captures	multiple	absorption	features	related	to	plant	biochemistry,	physiology	and	the	effects	of	
leaf	and	canopy	structure.	These	spectral	features	can	be	used	to	measure	the	plant	functional	traits	driving	
various	factors	of	ecosystem	functioning	(Table	1).	Many	of	these	measurements	are	required	in	Earth	
system	models,	but	most	models	currently	estimate	traits	from	point-based	trait	data	sets	(e.g.,	TRY:	Kattge	
et	al.	2011),	localized	studies,	or	biome-based	lookup	tables	applied	to	maps	of	broad,	generalized	plant	
functional	types	(PFTs),	which	are	insufficient	to	characterize	the	spatial	and	temporal	variability	in	traits	
both	within	and	among	biomes	globally	(Fisher	et	al.	2014,	Schimel	et	al.	2015,	Jetz	et	al.	2016).	Imaging	
spectroscopy	will	provide	a	vast	improvement	over	existing	data	used	to	parameterize	dynamic	vegetation	
models	(Fisher	et	al.	2015),	most	importantly	through	capturing	ecosystem	variability	that	is	lost	when	traits	
are	aggregated	by	PFT	classes	(Verheijen	et	al.	2015).			

Global	seasonal	spectroscopic	measurements	at	the	appropriate	temporal	and	spatial	scales	would	
provide	a	transformational	change	in	how	we	quantify	critical	variables	that	are	not	currently	detectable	at	
broad	scales	using	other	methods.	These	new	trait	measurements	obtained	via	an	imaging	spectroscopy	
mission	-	in	combination	with	ongoing	multispectral	remote	sensing	-	would	enable	the	full	characterization	
of	both	vegetation	state	and	ecophysiological	processes	related	to	primary	productivity	as	mediated	by	
climate,	soils,	stress/disturbance	and	anthropogenic	influences.	While	imaging	spectroscopy	would	provide	
assessment	of	functional	diversity	(e.g.,	distribution	of	plant	traits	among	species)	in	a	coherent,	continuous	
fashion,	multispectral	data	that	are	currently	available	at	high	temporal	frequency	would	provide	
complementary	estimates	of	phenological	patterns	of	green-up	and	senescence	(Garonna	et	al.	2016),	
disturbance	intensities	(Hansen	et	al.	2013)	and	land	cover	change	(Gomez	et	al.	2016).	Together	with	laser	
scanning	and	active	or	passive	radar	missions	to	characterize	vegetation	structure	and	biomass,	these	
technologies	would	enable	a	rich	accounting	of	terrestrial	ecosystems’	functional	dynamics.		

Spatially	explicit	maps	of	vegetation	functional	traits	derived	spectroscopically	are	essential	to	
understand	the	current	dynamic	state	of	the	Earth’s	ecosystems,	to	accurately	predict	responses	to	the	
current	high	rate	of	environmental	change,	and	to	help	to	lower	the	high	prediction	uncertainties.	
Repeated	measurements	from	a	global	imaging	spectrometer	will	advance	ecosystem	and	Earth	system	
models	(EESMs)	that	need	more	explicit	treatment	of	plant	traits	in	both	space	and	time	to	improve	our	
ability	to	represent	succession	and	competition	(Fisher	et	al.	2015;	Delpierre	et	al.,	2016).	
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2.	Utility	of	Spectroscopy	to	Mapping	Vegetation	Canopy	Foliar	Traits	
Photosynthesis	in	terrestrial	plants	is	driven	by	the	absorption	of	light	to	synthesize	the	energy	needed	to	
convert	water	and	CO2	to	the	O2	and	carbohydrates	that	are	the	foundation	of	life	on	Earth.	To	maintain	a	
net	positive	carbon	balance	during	photosynthesis,	plants	must	balance	light	and	water	availability,	thermal	
conditions	(i.e.,	climate),	and	the	availability	of	a	range	of	macro	and	micronutrients	important	to	both	light	
utilization	and	the	enzymes	that	catalyze	carbon	fixation,	and	to	many	other	biophysical	processes	in	plants.	
However,	variation	in	the	parameters	that	control	physiological	functioning	in	ecosystems	is	either	not	
known	at	broad	scales,	or	is	highly	uncertain	spatially	and/or	temporally	(Bloom	et	al.	2016).	For	example,	
global-scale	maps	of	foliar	nitrogen	(%N)	do	not	exist,	despite	the	fact	that	N	is	an	essential	constituent	of	
several	critical	compounds	necessary	for	CO2	assimilation	(e.g.,	chlorophyll	and	RuBisCo),	and	–	along	with	a	
suite	of	traits	such	as	leaf	mass	per	area	(LMA)	–	has	been	identified	as	a	key	trait	describing	worldwide	
variation	in	foliar	function	(Wright	et	al.	2004,	2005a,	Poorter	et	al.	2009).		

Imaging	spectroscopy	can	be	used	to	accurately	estimate	key	foliar	variables	(e.g.,	chlorophyll,	%N,	LMA)	
required	to	simulate	plant	physiology	and	metabolic	capacity	in	enzyme-kinetic	ecosystem	models	(Martin	et	
al.	2008,	Asner	et	al.	2011,	Singh	et	al.	2015,	Serbin	et	al.	2015).	Table	1	provides	a	list	of	traits	important	to	
photosynthetic	capacity	and	ecological	functioning	of	terrestrial	ecosystems	that	are	measureable	from	
imaging	spectroscopy.	This	includes	measurements	that	will	fill	critical	knowledge	gaps	and	reduce	
uncertainties	in	the	physiological	and	biochemical	parameters	that	regulate	carbon	assimilation	(i.e.,	
photosynthesis),	transpiration	(water	loss)	and	decomposition/nutrient	turnover	under	varying	
climate/environmental	conditions	(e.g.,	Cadule	et	al.	2009).	Such	measurements	will	have	the	added	benefit	
of	enabling	the	quantification	of	abiotic	(e.g.	nitrogen,	water)	and	biotic	stresses	(e.g.	pests	and	diseases)	in	
agriculture	(Bhattacharya	&	Chattopadhyay	2013).	

Spectroscopic	signals	contain	information	from	pigments,	nutrients,	foliar	structure,	and/or	water	
content	that	either	drive	photochemistry	or	are	a	consequence	of	it.	Physiologically,	plants	generally	manage	
absorbed	light	in	three	ways,	two	of	which	are	addressed	directly	by	new	measurements	from	imaging	
spectroscopy.	These	are:	1)	physiological	processes	related	to	photochemistry	in	photosystem-II,	and	2)	the	
dissipation	of	energy	through	non-photochemical	quenching	(NPQ),	which	are	complemented	by	3)	
chlorophyll	fluorescence,	an	emitted	signal	providing	direct	evidence	for	photosynthetic	activity	(Damm	et	al.	
2015).	As	has	been	shown	in	recent	studies,	measurements	from	spectroscopy	are	relevant	to	understanding	
both	traits	(Martin	et	al.	2008,	Asner	et	al.	2011,	Singh	et	al.	2015)	and	rates	(Serbin	et	al.	2015),	as	they	can	
be	used	to	map	not	just	fixed	biochemical	constituents	(“traits”),	but	also	physiological	parameters	that	
describe	exchange	of	CO2	and	water	(“rates”).	

The	imaging	spectroscopy	approach	includes	methods	that	both	a)	identify	biophysically	critical	
narrowband	features	at	specific	wavelengths	caused	by	known	absorption	of	key	indicator	molecules	or	
bonds	(Fig.	1),	and	b)	describe	the	entire	spectrum	using	their	full	inherent	dimensionality.	Together,	these	
two	capabilities	are	made	possible	only	with	imaging	spectroscopy,	and	enable	measurement	of	properties	
important	to	photosynthesis,	as	well	as	others	that,	while	not	direct	drivers	of	photosynthesis,	either	
modulate	overall	ecosystem	processes	or	represent	end-products	of	biological	processes.	These	include	the	
carbohydrate	content	of	plants,	as	well	as	constituents	such	as	ligno-cellulose	(important	structural	
compounds)	that	strongly	affect	decomposition	and	nutrient	cycling)	and	secondary	compounds	like	phenols	
that	are	important	to	plant	defenses	and	stress	responses.	
	

a)	Narrowband	Features	across	the	Full	VSWIR	Spectrum	
Dozens	of	narrowband	features	associated	with	pigment	concentrations	and	activity	occur	in	the	visible	
wavelengths	(400-700	nm),	requiring	a	spectroscopic	approach	for	full	characterization.	Measurements	of	
pigments	provide	insights	into	both	light	harvesting	and	plant	stress	status.	Individual	pigments	have	specific	
narrow	absorption	features	that	are	the	basis	for	mapping	pigment	concentration	of	vegetation	(Fig.	2,	see	
Kiang	et	al.	2007,	Ustin	et	al.	2009,	Gitelson	2012),	requiring	a	spectral	resolution	suitable	to	discriminating	
different	pigments	from	each	other.	Methods	have	been	developed	to	quantify	chlorophylls	a	and	b,	
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carotenoids	(Ferét	et	al.	2009),	including	xanthophyll	cycle	pigments	(Harris	et	al.	2014),	and	anthocyanin	
(Gitelson	2012,	Ferét,	pers.	comm.).	While	coarse	estimates	of	chlorophyll	and	overall	pigment	pools	are	
possible	from	multiple	approaches,	imaging	spectroscopy	is	required	for	accessory	pigments.		

Gamon	et	al.	(1992)	introduced	the	Photochemical	Reflectance	Index	(PRI),	which	exploits	a	narrowband	
absorption	feature	at	531	nm	that,	in	relation	to	specific	reference	bands,	varies	on	short	time	scales	with	
xanthophyll	pigment	conversions	(Gamon	et	al.	1997)	and	on	seasonal	time	scales	with	overall	pigment	ratios	
(Wong	and	Gamon	2015ab,	Gamon	2015),	and	correlates	strongly	with	radiation	use	efficiency	and	CO2	
uptake.	Stylinski	et	al.	(2000)	also	demonstrated	the	sensitivity	of	PRI	to	photosynthetic	capacity,	while	
Peñuelas	et	al.	(2013)	found	that	PRI	could	be	used	to	estimate	ecosystem-level	isoprenoid	emissions	from	
vegetation	canopies,	enabling	further	reduction	of	uncertainties	in	estimates	of	carbon	fixation.	With	over	
1,000	literature	citations,	PRI	is	the	most	widely	used	remote	sensing	index	directly	related	to	plant	
physiology.		

The	position,	steepness	and	inflection	point	of	the	red	edge,	the	long	wavelength	edge	of	the	chlorophyll	
absorption	feature	(680-750	nm),	is	a	strong	indicator	of	vegetation	status	and	performance	(Horler	et	al.	
1983ab,	Rock	et	al.	1988).	While	NDVI	calculated	using	reflectance	on	both	sides	of	the	red	edge	is	a	useful	
indicator	of	overall	vegetation	greenness,	the	shift	of	the	position	and	shape	of	the	red-edge	across	this	
wavelength	interval	is	a	more	explicit	metric	of	chlorophyll	amount,	activity	and	change	(Vogleman	et	al.	
1993).	

Numerous	narrowband	features	associated	with	vibrations	in	chemical	bonds	occur	in	the	rest	of	the	
NIR-SWIR	spectral	range	(700-2500	nm)	and	are	used	to	estimate	biochemical	constituents	and	other	
vegetation	properties	important	to	physiological	functioning,	such	as	water,	nitrogen,	starches,	sugars,	lignin,	
cellulose,	and	secondary	constituents	(Curran,	1989,	Elvidge	1990,	Kokaly	et	al.	2009).	Curran	(1989)	listed	42	
narrowband	features,	38	in	the	900-2500	nm	region.	Kokaly	&	Skidmore	(2015)	report	the	presence	of	a	
narrowband	feature	at	1656-1660	nm	that	can	be	used	to	accurately	estimate	phenolic	concentrations	in	
vegetation	canopies,	important	to	plant	defenses	against	both	herbivory	and	excess	light	absorption	in	young	
leaves.	Detection	and	mapping	of	recalcitrant	compounds	such	as	lignin	and	cellulose	is	important	to	
characterizing	decomposition	rates	and	nutrient	availability.	Additional	work	shows	the	ability	to	use	SWIR	
wavelengths	to	map	condensed	tannins	(also	important	to	plant	defense),	as	well	as	non-structural	
carbohydrates	in	foliage	like	sugars	and	starches	(Asner	&	Martin	2015),	and	elements	important	to	
metabolism,	like	P	and	K	(Asner	et	al.	2015).	

Finally,	water	content,	which	typically	represents	about	half	of	fresh	leaf	weight,	exerts	a	primary	control	
on	vegetation	physiology.	Water	in	vegetation	exhibits	broad	absorptions	across	the	NIR	and	SWIR,	but	also	
narrow	water	absorption	features,	notably	at	970	and	1200	nm,	that	are	widely	used	to	estimate	equivalent	
water	thickness	(Ustin	et	al.	2012,	Casas	et	al.	2014)	and	subtle	changes	in	canopy	water	content	due	to	
drying	(Cheng	et	al.	2014a),	drought	impacts	(Asner	et	al.	2016)	and	mortality	(Stimson	et	al.	2005).	
	

b)	Methods	Exploiting	the	Full	VSWIR	Signal		
Since	the	first	Decadal	Survey,	the	most	significant	advances	in	the	use	of	imaging	spectroscopy	to	
characterize	ecosystem	function	have	entailed	use	of	the	full	VSWIR	spectrum	(380-2500	nm)	to	map	
ecosystem	properties.	While	numerous	methods	exist	to	exploit	the	full	spectrum,	the	most	common	used	in	
spectroscopy	are	statistical	and/or	empirical	approaches,	such	as	partial	least	squares	regression	(PLSR,	Wold	
et	al.	2001)	and	continuum	removal	(Kokaly	&	Clark	1999),	along	with	physical	approaches	such	as	radiative	
transfer	models,	RTMs).	
Radiative	Transfer.	RTM	approaches	include	both	leaf	optical	and	canopy	reflectance	models,	and	have	
gradually	evolved	from	using	1D	to	3D	schemes,	as	well	as	from	two-stream	to	four-stream	approximations.	
Jacquemoud	&	Ustin	(2008)	provide	a	comprehensive	treatment	of	the	range	of	leaf	model	types,	which	
include	plate	models	such	as	PROSPECT	(Jacquemoud	et	al.	2009)	or	LEAFMOD	(Ganapol	et	al.	1998),	
compact	spherical	particle	models	such	as	LIBERTY	(Dawson	et	al.	1998),	and	less-used	stochastic	(Maier	et	
al.	1999)	and	ray	tracing	models	(Govaerts	&	Verstraete,	1998).	Canopy	reflectance	modeling	is	achieved	by	
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coupling	soil	and	leaf	scattering	regimes	to	include	canopy	scale	reflectance	and	transmittance.	Such	coupled	
models	(SAIL,	PROSAIL,	SLC;	e.g.	Jacquemoud	et	al.	2009,	Verhoef	&	Bach	2007)	are	inverted	with	relatively	
low	prior	informative	requirements	and	yield	good	results	of	some	key	traits	(chlorophyll,	dry	matter,	leaf	
mass	per	area	(LMA),	water	content,	leaf	area	index	(Jacquemoud	et	al.	2009)),	retrieval	of	carotenoids	(Ferét	
et	al.	2008)	and	anthocyanins	(Ferét,	pers.	comm.).	While	those	models	cannot	capture	all	biochemical	
sources	of	variation	in	foliage	(Asner	et	al.	2011),	they	are	critical	to	a	physically	based	understanding	of	the	
drivers	of	spectral	variation	in	foliage	(Ustin	2013,	Knyazikhin	et	al.	2012	VSWIR	imaging	spectroscopy	
provides	the	information	needed	to	improve	our	mechanistic	prediction	of	plant	traits	through	RTM	
approaches	by	helping	to	identify	key	relationships	between	plant	properties	and	spectral	reflectance.	
PLSR	Retrievals.	Foliar	nitrogen	content	(%N)	is	a	widely	used	surrogate	measure	for	photosynthetic	capacity	
(Evans	1989).	Nitrogen	in	proteins	is	central	to	photosynthesis,	with	higher	%N	suggesting	a	greater	foliar	
RuBisCo	and	thus	higher	capacity	for	carbon	assimilation.	As	such,	maps	of	%N	derived	from	imaging	
spectroscopy	have	been	used	in	a	modeling	framework	to	predict	net	primary	productivity	(Ollinger	&	Smith	
2005).	Most	approaches	to	foliar	trait	mapping	utilize	chemometric	approaches	such	as	PLSR	as	a	function	of	
the	full	400-2500	spectrum,	excluding	atmospheric	water	absorption	bands	(Fig.	3).	Martin	et	al.	(2008)	
showed	that	%N	could	be	accurately	mapped	using	PLSR	models	built	from	VSWIR	Hyperion	and	AVIRIS	
imaging	spectroscopy	data	sets	from	numerous	sites	around	the	world.	Likewise,	both	Asner	et	al.	(2015)	and	
Singh	et	al.	(2015)	have	shown	the	capacity	to	estimate	a	range	of	traits	from	imaging	spectroscopy	collected	
in	multiple	environments	across	many	images.	In	addition	to	%N,	these	authors	and	others	(e.g.,	Casas	et	al.	
2013,	Cheng	et	al.	2014b,	Homolová	et	al.	2013)	have	also	mapped	LMA.	LMA	is	important	to	vegetation	
physiology,	as	it	represents	a	plant’s	trade-off	between	leaf	longevity	(high	LMA)	and	high	productivity	(low	
LMA)	(Reich	et	al.	2004,	Poorter	&	DeJong	1999,	wright	et	al.	2005b,	Poorter	et	al.	2009).	Research	has	
shown	that	both	%N	(Kattge	et	al.	2009)	and	LMA	(Green	&	Kruger	2001)	can	be	used	to	infer	photosynthetic	
capacity.	In	addition	to	inferring	photosynthetic	capacity	from	imaging	spectroscopy	maps	of	%N	and	LMA,	
recent	studies	have	shown	the	capability	to	directly	map	Vcmax	(Serbin	et	al.	2015),	a	measure	of	
photosynthetic	capacity	that	is	used	in	all	enzyme-kinetic	ecosystem	models	employing	the	widely	used	
Farquhar	model	of	photosynthesis.		

Both	Asner	et	al.	(2015)	in	the	tropics	and	Singh	et	al.	(2015)	in	mid-latitude	ecosystems	show	the	
capacity	of	full	VSWIR	methods	to	map	a	range	of	additional	canopy	traits	that	are	important	to	overall	
ecosystem	function,	including	phenolics,	condensed	tannins,	cellulose	and	lignin.	Asner	&	Martin	(2015)	also	
demonstrate	the	utility	of	VSWIR	spectroscopy	to	estimate	non-structural	carbohydrates,	the	more	soluble	
carbon-containing	compounds	in	foliage,	as	well	as	a	range	of	other	elements	important	to	metabolism.	
	

3.	Performance	and	Coverage	Specifications	for	VSWIR	Imaging	Spectroscopy	
At	a	global	scale,	terrestrial	ecosystem	modeling	is	limited	by	the	lack	of	data	on	vegetation	functional	traits.	
Only	a	small	portion	of	the	taxa	and	functional	trait	space	has	been	characterized	either	through	traditional	
field	methods	(Schimel	et	al.	2015,	Jetz	et	al.	2016)	or	by	imaging	spectroscopy.	No	global	coverage	of	
imaging	spectroscopy	data	or	other	relevant	method	to	retrieve	biochemistry/foliar	traits	currently	exists,	
and	the	ground-based	methods	(field	sampling,	analytical	chemistry,	gas	exchange	measurements)	that	
would	be	needed	to	fully	characterize	spatial	and	temporal	variation	in	biochemistry	on	Earth	are	impractical	
to	impossible	(Jetz	et	al.	2016).	Global	imaging	spectroscopy	is	therefore	needed	to	fill	these	critical	data	
gaps.	Sampling	data	from	the	forthcoming	EnMAP	mission	(Guanter	et	al.	2015)	and	data	from	airborne	
missions	such	as	AVIRIS-C	(Green	et	al.	1998)	and	AVIRIS-NG	(Hamlin	et	al.	2011),	the	NEON	Aerial	
Observation	Platform	(Kampe	et	al.	2010),	the	Carnegie	Aerial	Observatory	(Asner	et	al.	2012)	and	the	APEX	
instrument	(Schaepman	et	al.	2015)	are	not	of	sufficient	spatial	coverage	or	temporal	resolution	to	
characterize	the	dynamic	drivers	of	vegetation	physiology	across	global	ecosystems.	Moreover,	these	
sampling	missions	often	cannot	deploy	to	ephemeral	or	“hot-spots”	of	change	(e.g.,	short	but	intense	
drought	events)	which,	if	imaged,	could	provide	critical	missing	information	needed	to	better	understand	
plant	responses	to	short-term	perturbations	or	the	ability	to	capture	previous	conditions	and	post	change.	
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Based	on	existing	algorithms	that	have	been	developed	primarily	from	aircraft	studies	(e.g.,	Singh	et	al.	
2015),	the	physical	requirements	of	the	mission	include	atmospherically	corrected	surface	reflectance	
covering	450-2450	nm	at	a	minimum	10	nm	intervals	(see	Science	Traceability	Matrix,	Table	2).	Identification	
of	narrowband	features	associated	with	foliar	absorption	features	requires	signal-to-noise	(SNR)	
commensurate	with	the	depth	of	spectral	features	(Fig.	4).	Spatial	resolution	≤40	m	is	necessary	to	retrieve	
foliar	parameters	at	scales	that	balance	capturing	the	natural	variability	in	vegetation	across	landscapes	while	
minimizing	intra-canopy	effects	(i.e.,	the	pixel	is	a	canopy,	not	part	of	a	canopy).	Because	vegetation	
physiology	and	biochemistry	change	across	the	growing	season,	seasonal	measurements	of	foliar	traits	are	
required	to	fully	characterize	annual	dynamics	of	biogeochemical	cycles	and	their	variability	between	and	
among	biomes.	The	baseline	requirement	is	at	least	one	cloud-free	measurement	in	the	peak	of	the	growing	
season	for	≥90%	of	the	Earth’s	terrestrial	surface	per	year,	with	multi-seasonal	measurements	for	≥90%	of	
the	Earth’s	terrestrial	surface	collected	over	the	mission	lifetime.	Geometric	surface	location	requirements	
include	a	maximum	of	two	times	the	instantaneous	field	of	view	using	global	high	resolution	DEM	data.	This	
will	also	enable	correction	for	directional	effects	due	to	volumetric	and	geometric	scattering	(i.e.,	BRDF,	
Lucht	et	al.	2000).	

	

4.	Affordability	of	Required	Measurements	
The	measurement	of	vegetation	traits	from	imaging	spectroscopy	can	be	achieved	affordably	in	the	

decadal	timeframe,	due	to	investments	by	NASA	in	response	to	global	terrestrial/coastal	coverage	missions	
outlined	in	the	2007	NRC	Decadal	Survey	(NRC	2007),	the	NRC	Landsat	and	Beyond	report	(NRC	2013)	and	
other	efforts.	This	builds	on	a	legacy	of	air	and	space	instruments,	which	have	validated	the	feasibility	of	
these	measurements,	including	airborne:	AIS	(Vane	et	al.	1984),	AVIRIS	(Green	et	al.	1998),	and	AVIRIS-NG	
(Hamlin	et	al.	2011);	and	space:	NIMS	(Carlson	et	al.	1992),	VIMS	(Brown	et	al.	2004),	Deep	Impact	(Hampton	
et	al.	2005),	CRISM	(Murchie	et	al.	2007),	EO-1	Hyperion	(Ungar	et	al.	2003,	Middleton	et	al.	2013),	M3	
(Green	et	al.	2011)	and	MISE,	the	imaging	spectrometer	now	being	developed	for	NASA’s	Europa	mission.		

NASA-guided	engineering	studies	in	2014	and	2015	show	that	a	Landsat-class	VSWIR	(380	to	2510	nm	@	
≤10	nm	sampling)	(Fig.	5)	imaging	spectrometer	instrument	with	a	185	km	swath,	30	m	spatial	sampling	and	
16-day	revisit	with	high	SNR	and	the	required	spectroscopic	uniformity	can	be	implemented	affordably	for	a	
three-year	mission	with	mass	(98	kg),	power	(112	W),	and	volume	compatible	with	a	Pegasus	class	launch	or	
ride	share	(Fig.	6).	The	telescope	can	be	scaled	for	higher	orbits.	

The	key	for	this	measurement	is	an	optically	fast	spectrometer	providing	high	SNR	and	a	design	that	can	
accommodate	the	full	spectral	and	spatial	ranges	(Mouroulis	et	al.	2016).		A	scalable	prototype	F/1.8	full	
VSWIR	spectrometer	(van	Gorp	et	al.	2014)	with	full	spectral	range	CHROMA	detector	array	has	been	
developed,	aligned,	and	is	being	qualified	(Fig.	6).		

Data	rate	and	volume	challenges	have	been	addressed	by	development	and	testing	of	a	lossless	
compression	algorithm	for	spectral	measurements	(Klimesh	et	al.	2006,	Aranki	et	al.	2009ab,	Keymeulen	et	
al.	2014).	This	algorithm	is	now	a	CCSDS	standard	(CCSDS	2015).	With	compression	and	the	current	Ka	band	
downlink	offered	by	KSAT	and	others,	all	terrestrial/coastal	measurements	can	be	downlinked	(Fig.	7).		

Algorithms	for	calibration	(Green	et	al.	1998)	and	atmospheric	correction	(Gao	et	al.	1993,	2009,	
Thompson	et	al.	2014,	2015)	of	large	diverse	data	sets	have	been	benchmarked	as	part	of	the	HyspIRI	
preparatory	campaign	(Lee	et	al.	2015)	as	well	as	for	the	AVIRIS-NG	India	and	Greenland	campaigns	and	
elsewhere.	Algorithms	for	vegetation	trait	retrievals	have	been	tested	extensively	in	a	range	of	ecosystems	
including	the	tropics,	temperate	and	boreal	zones,	as	well	as	in	agriculture	(see	Table	1,	e.g.,	Martin	et	al.	
2008,	Asner	et	al.	2015,	Singh	et	al.	2015,	Serbin	et	al.	2015).	

To	enhance	affordability	and	accelerate	measurement	availability,	there	is	good	potential	for	shared	
launches,	spacecraft,	and	international	partnerships.	

	
	 	



	

	 6	

TABLES	AND	FIGURES	
	

Table	1.		List	of	key	foliar	functional	traits	that	can	be	estimated	from	imaging	spectroscopy.		

1Categories	of	functional	characterization	are	for	organizational	purposes	only:	Primary	refers	to	compounds	that	are	critical	to	photosynthetic	
metabolism;	Physical	refers	to	non-metabolic	attributes	that	are	also	important	indicators	of	photosynthetic	activity	and	plant	resource	allocation;	
Metabolism	refers	to	measurements	used	to	describe	rate	limits	on	photosynthesis;	and	Secondary	refers	compounds	that	are	not	directly	related	to	
plant	growth,	but	indirectly	related	to	plant	function	through	associations	with	nutrient	cycling,	decomposition,	community	dynamics,	and	stress	
responses.	

Functional 
characterization1 Trait Example of functional 

role Example Citations 

Primary 

Foliar N (% dry mass or area based) Critical to primary metabolism (e.g., 
Rubisco),  

Johnson et al. 1994, Gastellu-
Etchegorry et al. 1995, Mirik et al. 
2005, Martin et al. 2008, Gil-Perez et 
al. 2010, Goekkaya et al. 2015, 
Kalacska et al. 2015, Singh et al. 
2015 

Foliar P (% dry mass) DNA, ATP synthesis Mirik et al. 20015, Mutangao & 
Kumar 2007, Gil-Perez et al. 2010, 
Asner et al. 2015 

Sugar (% dry mass) Carbon source Asner & Martin 2015	 

Starch (% dry mass) Storage compound, carbon reserve Matson et al. 1994 

Chlorophyll-total (ng g-1) Light-harvesting capability Johnson et al. 1994, Zarco-Tejada et 
al. 1999, 2000a, Gil-Perez et al. 
2010, Zhang et al. 2008, Kalacska et 
al. 2015 

Carotenoids (ng g-1) Light harvesting, antioxidants Datt 1998, Zarco-Tejada et al. 1999, 
2000a 

Other pigments (e.g., anthocyanins; ng g-1) Photoprotection, NPQ van den Berg & Perkins 2005 

Water content (% fresh mass) Plant water status Gao & Goetz 1995, Gao 1996, 
Thompson et al. 2016, Asner et al. 
2016 

Physical 

Leaf mass per area (g m-2) Measure of plant resource 
allocation strategies 

Asner et al. 2015, Singh et al. 2015 

Fiber (% dry mass) Structure, decomposition Mirik et al. 2005, Singh et al. 2015 

Cellulose (% dry mass) Structure, decomposition Gastellu-Etchegorry et al. 1995, 
Thulin et al. 2014, Singh et al. 2015 

Lignin (% dry mass) Structure, decomposition Singh et al. 2015 

Metabolism 

Vcmax (µmol m-2 s-1) Rubisco-limited photosynthetic 
capacity 

Serbin et al. 2015 

Photochemical Reflectance Index (PRI) Indicator of non-photochemical 
quenching (NPQ) and 
photosynthetic efficiency, 
xanthophyll cycle 

Gamon et al. 1992; Asner et al. 2004 

Fv/Fm Photosynthetic capacity Zarco-Tejada et al. 2000b 

Secondary 
Bulk phenolics (% dry mass) Stress responses Asner et al. 2015 

Tannins (% dry mass) Defenses, nutrient cycling, stress 
responses 

Asner et al. 2015 



Table	2.		Traceability	matrix	for	a	global	imaging	spectroscopy	mission	for	terrestrial	ecosystem	functioning	and	biogeochemical	processes.

Science	Target Science	Objectives
Functional 
characterization1 Trait Spectral Range and Sampling

Other Measurement 
Characteristics

Example Citations

Foliar N (% dry mass or area 
based)

450 to 2450 nm @ ≤15 nm

Johnson et al. 1994, Gastellu-Etchegorry et al. 
1995, Mirik et al. 2005, Martin et al. 2008, Gil-
Perez et al. 2010, Goekka et al. 2015, Kalacska 
et al. 2015, Singh et al. 2015

Foliar P (% dry mass) 450 to 2450 nm @ ≤15 nm
Mirik et al. 2005, Mutangao & Kumar 2007, Gil-
Perez et al. 2010, Asner et al. 2015

Sugar (% dry mass) 1500 to 2400 nm @ ≤15 nm Asner & Martin 2015 

Starch (% dry mass) 1500 to 2400 nm @ ≤15 nm Matson et al. 1994

Chlorophyll-total (mg g-1) 450 to 740 nm @ ≤ 10 nm
Johnson et al. 1994, Zarco-Tejada et al. 1999, 
2000, Gil-Perez et al. 2010, Zhang et al. 2008, 
Kalacska et al. 2015

Carotenoids (mg g-1) 450 to 740 nm @ ≤ 10 nm Datt 1998, Zarco-Tejada et al. 1999, 2000
Other pigments (e.g., 
anthocyanins; mg g-1)

450 to 740 nm @ ≤ 10 nm van den Berg & Perkins 2005

Water content (% fresh mass)
980 nm ±40, 1140±50 @ ≤ 20 
nm

Gao & Goetz 1995, Gao 1996, Thompson et al. 
2015, Asner et al. 2016

Leaf mass per area (g m-2) 1100 to 2400 nm @ ≤20 nm Asner et al. 2015, Singh et al. 2015

Fiber (% dry mass) 1500 to 2400 nm @ ≤20 nm Mirik et al. 2005, Singh et al. 2015

Cellulose (% dry mass) 1500 to 2400 nm @ ≤20 nm
Gastellu-Etchegorry et al. 1995, Thulin et al. 
2014, Singh et al. 2015

Lignin (% dry mass) 1500 to 2400 nm @ ≤20 nm
Johnson et al. 1994, Gastellu-Etchegorry et al. 
1995, Thulin et al. 2014, Singh et al. 2015

Vcmax (µmol m-2 s-1) 450 to 2450 nm @ ≤15 nm Serbin et al. 2015
Photochemical Reflectance 
Index (PRI).              
______________________                                            
Fraction of absorbed 
photosynthetically active 
radiation by chlorophyll, 
fAPARchl.

450 to 650 nm @ ≤ 10 nm                                        
_____________________                                                                                                                       
450 to 800 nm @ ≤ 20 nm

Gamon et al. 1992, Asner et al. 2004

Bulk phenolics (% dry mass) 1100 to 2400 nm @  ≤ 10 nm Asner et al. 2015

Tannins (% dry mass) 1100 to 2400 nm @  ≤ 10 nm Asner et al. 2015

Water vapor 980 nm ±50, 1140±50 @ ≤ 20 
nm

Cirrus clouds
940 nm ±30, 1140±40 @ ≤ 20 
nm Thompson et al. 2015, Gao et al. 1993

Aerosols 450 to 1200 nm @ ≤ 20 nm

Theme	III:	Marine	and	

Terrestrial	Ecosystems	

and	Natural	Resource	

Management	

New	essential	

measurements	of	the	

biochemical,	

physiological,	and	

functional	attributes	of	

the	Earth’s	terrestrial	

vegetation

Seasonal cloud free 
measurement for ≥		

80% terrestrial 
vegetation areas.

Radiometric range 
and sampling to 
capture range of 

vegetation signals 
from tropical to high 
latitude summers.

Signal-to-Noise Ratio 
consistent with 
tropical to high 

latitude vegetation 
(e.g., red region, 

>500:1).

At least three years of 
measurement to 

capture inter-annual 
variability and 

seasonally as robust 
baseline for ≥80 of 

the terrestrial 
ecosystems.

Required for Atmospheric 
Correction

O1.	To	deliver	new	

quantification	of	

biogeochemical	cycles,	

ecosystem	functioning,	

and	factors	that	

influence	vegetation	

health	and	ecosystem	

services.

	

	O2.	To	advance	Earth	

system	models	with	

improved	process	

representation	and	

quantification.	

Primary Biochemical 
Content

Physical/Structural Content

Metabolism

Secondary Biochemcial 
Content
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Fig.	1.	a)	Narrowband	features	associated	with	vegetation	functional	traits	in	Table	1	and	reported	in	the	literature;	b)	
minimum	noise	fraction	of	imaging	spectroscopy	data	from	Florida;	and	c)	example	spectra	from	b)	showing	
narrowband	variations	across	spectra.	Figure	courtesy	of	A.	Singh	and	J.	Couture.	
	
	

	
	
Fig.	2.	Differences	in	absorption	spectra	of	chlorophyll	a,	chlorophyll	b	and	β-carotene.	From	Ustin	et	al.	(2009).	
	
	

	
	
Fig.	3.	Example	PLSR	coefficients	by	wavelength	for	mapping	functional	traits	from	imaging	spectroscopy:	chlorophyll	
and	nitrogen	from	Asner	et	al.	(2015),	LMA	(Marea)	from	Singh	et	al.	(2015),	and	Vcmax	from	Serbin	et	al.	(2015).		
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Fig.	4.	Left:	Top	of	atmosphere	radiance	for	a	reference	tropical	broadleaf	and	a	high	latitude	conifer.	Right:	
Corresponding	SNR	that	is	consistent	with	the	measurements	by	AVIRIS-C	and	other	airborne	imaging	spectrometers	
that	have	been	used	to	retrieve	the	plant	parameters	of	interest.	This	SNR	is	a	factor	of	4	higher	than	EO-1	Hyperion	
that	has	been	used	with	some	success	for	trait	mapping.	
	
	

	
	

Fig.	5.	Left:	Opto-mechanical	configuration	for	a	high	SNR	VSWIR	imaging	spectrometer	with	185	km	swath	a	30	m	
sampling	providing	full	terrestrial	and	coastal	coverage	every	16	days.	Center:	Imaging	spectrometer	with	spacecraft	
configured	for	launch	in	a	Pegasus	shroud	for	an	orbit	of	429	km	altitude,	97.14	inclination	to	provide	16	day	revisit	for	
three	years.	Right:	Contiguous	spectral	coverage	from	380	to	2510	with	comparison	to	Landsat	bands.	
	
	

	

Fig.	6.	Left:		Design	of	F/1.8	VSWIR	Dyson	covering	the	spectral	range	from	380	to	2510	nm.	Right:	Developed,	aligned	
and	qualified	Dyson	with	CHROMA	full	range	VSWIR	detector	array.	

	
	 	



	

	 10	

	

Fig.	7.		Left:	Global	illuminated	surface	coverage	every	16	days.	Right:	On-board	data	storage	usage	for	illuminated	
terrestrial/coastal	regions	with	downlink	using	Ka	Band	(<900	mb/s)	to	KSAT	Svalbard	and	Troll	stations.		Oceans	and	ice	
sheets	can	be	spatially	averaged	for	downlink.	
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